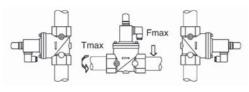


EVRM-NC

ÉLECTROVANNES GAZ À RÉARMEMENT MANUEL **NORMALEMENT FERMÉE**

ELECTROVANNE DE SÜRETÉ EVRM-NC

L'électrovanne de type EVRM-NC est une électrovanne de sécurité à réarmement manuel normalement fermée. Dans des conditions de repos, le ressort agit sur le clapet de l'électrovanne gardant ainsi fermé le passage du gaz. En alimentant simplement la bobine, l'électrovanne ne s'ouvre pas. Il faut intervenir manuellement sur le levier de réarmement placé sur le sommet de l'électrovanne. Une fois ouverte, l'électrovanne est capable de garder cette position pendant tout le temps que dans la bobine on a du courant. En absence de courant, l'électrovanne se ferme rapidement et au rétablissement du courant, elle reste fermée. Une fois éliminées les causes de l'anomalie, l'ouverture doit être effectuée manuellement comme décrite ci-dessus. Ce type de dispositif, en liaison avec un ou plusieurs pressostats, est fait pour des manoeuvres d'arrêt et de distribution de gaz ou d'air et il est apte au service continue (toujours sous tension).


Vérifier la concordance entre le sens du débit et la flèche en relief sur le corps de l'électrovanne, contrôler le juste alignement des tuyaux de branchement et observer que la distance des parois permet une libre circulation de l'air. L'électrovanne peut être montée avec la bobine horizontale ou verticale. La bobine peut être elle même orientée dans n'importe quelle direction sur 360°. L'installer dans un endroit protégé de la pluie, des jets ou des égouttements d'eau.

Pour le branchement électrique, ôter le couvercle du connecteur et brancher les câbles d'alimentation au bornier du circuit de redressement.

Eviter de trop serrer et monter sans tension.

Le tableau suivant montre les valeurs maximum de tension (F max), de serrage (T max), de force des visses (C max) suivant la norme EN 13611.

Connections	Fmax (Nm) t<10 s	Tmax (Nm)	Cmax (Nm)
Rp 3/8	70	35	-
Rp 1/2	105	50	-
Rp 3/4	225	85	-
Rp 1	340	125	-
Rp 11/4	475	160	-
Rp 11/2	610	200	50
Rp 2	1100	250	50
DN 65	1600	-	50
DN 80	2400	-	50
DN 100	5000	-	80
DN 125	6000	-	160
DN 150	7600	-	160
DN200	7600	-	160
DN250	7600	-	160
DN300	7600	-	160

Raccords F/F

: filetés gaz de 3/8″ à 2″ : à brides PN16 - UNI 2223 de DN65 à DN300

230V-50760 H7 Tension

110V-50/60 HZ : 24 VAC - VDC : 12V VAC - VDC

Marge de tension :-15% ÷ +10% Température de travail :-15°C ÷ +60°C

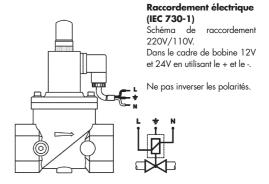
: 600 mbar / 6 bar Pression de travail

Temps de fermeture : < 1 seconde

: IP 65 < DN100 IP 54 > DN100 Dearé de protection Presse à câbles : Fiche DIN PG 9

: 1/4" sur deux côtés Prises de pression

(exclu sur le modèle avec corps en laiton)


Norme Atex

(Ex) EEx nA 11 T4X (sur demande)

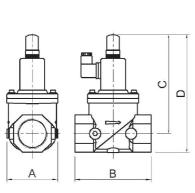
Ce matériel doit être installé en accord avec les lois en vigueur. Elektrogas se réserve le droit d'apporter des mises à jour ou des modifications techniques sans avis préalable.

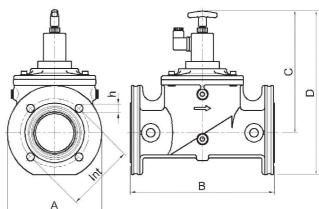
BRANCHEMENT ÉLECTRIQUE

Enlever le couvercle de protection et brancher les câbles d'alimentation au bornier du circuit de redressement. Dans le cas où l'on effectue le passage des câbles à travers le trou qui était à l'origine fermé, pour fermer l'autre trou resté ouvert, utiliser la pastille en caoutchouc qui se trouve sous le bouchon.

On peut facilement nettoyer le filtre ou le logement de passage du gaz de la poussière et de toute autre particule étrangère. Après avoir fermé le gaz à l'amont et coupé la tension, la bobine se déplace en dévissant la poignée de réarmement et le capuchon moleté de fixation. Dévisser ensuite les vis qui fixent la contrebride au corps de l'électrovanne. Pendant cette opération, faire attention à ne pas endommager le logement du clapet.

EVRM-NC


GAMME SUIVANT TENSION ET PRESSION



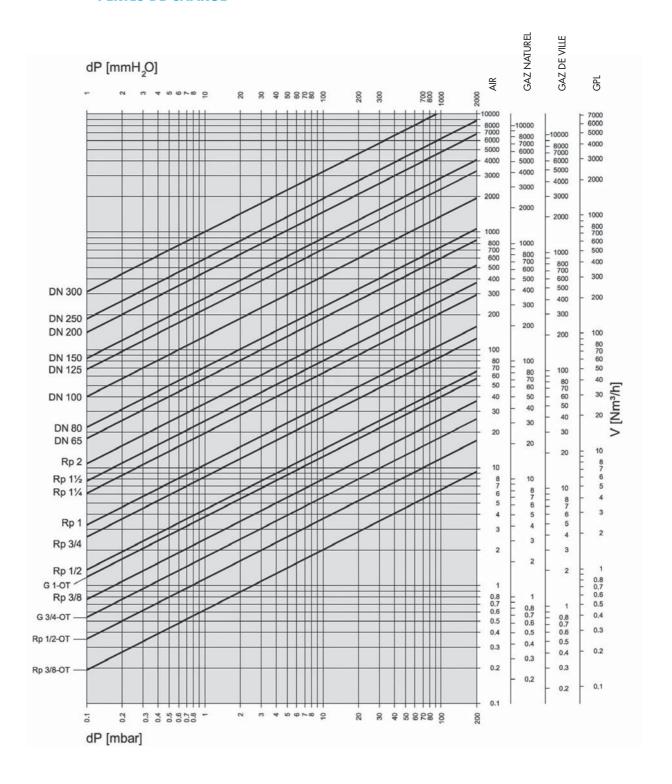
Modèle		_	Facteur	Dimensions (mm)						
Bronze	Aluminium	Consommation à 230VAC	Kvs (m³/h)	A	В	С	D	Int	h	Poids Kg
Rp 3/8		8	0,7	30	58	115	130	-	-	0,4
Rp 1/2		8	1,3	30	58	115	130		-	0,4
G 3/4		8	2,0	35	55	113	130	-	-	0,6
G 1		8	4,5	40	62	115	137	-	-	0,7
	Rp 3/8	12	2,9	70	77	148	164	-	-	0,9
	Rp 1/2	12	6,0	70	77	148	164		-	0,9
	Rp 3/4	12	9,5	85	96	158	180	-	-	1,1
	Rp 1	12	12,0	85	96	158	180			1,1
	Rp 1 ^{1/4}	12	20,0	120	153	188	220	-	-	2
	Rp 1 ^{1/2}	12	26,0	120	153	188	220		-	2
	Rp 2	12	40,0	106	156	192	230	-	-	2,3
	DN 401	12	26,0	150	193	188	262	110	4x18	3,7
	DN 501	12	40,0	165	196	192	274	125	4x18	4,3
	DN 65	25	6300	200	305	262 ²	352 ²	145	4x18	7,6
	DN 80	25	80,0	200	305	262 ²	352 ²	160	8x18	7,6
	DN 100	35	148,0	252	350	305 ²	435 ²	180	8x18	17
	DN 125	35	250,0	310	460	370 ²	540 ²	210	8x18	29
	DN 150	35	315,0	310	460	370 ²	540 ²	240	8x23	31
	DN200	35	516,0	370	546	425 ²	635 ²	295	12x23	46
	DN250	35	660,0	405	600	485 ²	712 ²	355	12x28	72
	DN300	35	1120,0	460	700	523 ²	786²	410	12x28	99

¹ Possibilité kit transformation en bride - ² Ouverture de vanne

FORMULE DE CONVERSION DE L'AIR VERS D'AUTRE GAZ

Type de Gaz	Masse volumique (Kg/m³)	K
Gaz naturel	0.80	1.25
Gaz de ville	0.57	1.48
Propane	2.08	0.77
Air	1.25	1.00

^{+15°}C, 1013 mbar, sec


$$V_{AIR} = \frac{V_{Gaz \ a \ utilisé}}{K}$$

K=
$$\sqrt{\frac{\text{Masse volumique de l'air}}{\text{Masse volumique du gaz}}}$$

EVRM-NC

PERTES DE CHARGE

